Trigonometric

A Trigonometric Time Series defines a time–history where the load factor λ\lambda varies sinusoidally in time. In Alpaca4d (following OpenSees) it is typically defined as:

λ(t)=cfactorsin ⁣(2πT(ttshift))\lambda(t) = c_\text{factor} \, \sin\!\Big( \tfrac{2\pi}{T} (t - t_\text{shift}) \Big)

over a specified active interval tstartttendt_\text{start} \le t \le t_\text{end}, where:

  • cfactorc_\text{factor} is the amplitude,

  • TT is the period,

  • tshiftt_\text{shift} is a phase shift in time.

This is useful for modelling harmonic / cyclic loading such as machine vibrations or idealised base excitations.

🔧 Grasshopper component

The Trigonometric Time Series (Alpaca4d) component constructs a periodic (sine) time series with user‑controlled time window, period and amplitude.

  • Inputs

    • TStart: Start time tstartt_\text{start} [s][s].

      • Type: Number

      • Default: 0.0

      • Effect: For t<tstartt < t_\text{start} the load factor is zero.

    • TEnd: End time tendt_\text{end} [s][s].

      • Type: Number

      • Requirement: tend>tstartt_\text{end} > t_\text{start}. For $$$t > t_\text{end} $$ the load factor is usually zero.

    • Period: Period $ T $ of the sinusoidal function $[s]$.

      • Type: Number

      • Effect: Controls the frequency of oscillation.

    • Shift: Time shift tshiftt_\text{shift} [s][s].

      • Type: Number

      • Default: 0.0

      • Effect: Moves the sine wave left/right in time (phase shift).

    • LoadFactor: Amplitude cfactorc_\text{factor} of the sine wave.

      • Type: Number

      • Default: 1.0.

  • Outputs

    • TimeSeries: Alpaca4d Trigonometric time series object.

    • Graph: A list of values representing the sinusoidal time–history between TStart and TEnd.

📈 When to use a trigonometric time series

  • Use it when

    • You need harmonic / cyclic loading with a well‑defined frequency (e.g. machine vibration, idealised sinusoidal base motion).

    • You want to control the number of cycles in a given time window via TStart, TEnd and Period.

    • You are performing parametric studies on frequency–dependent response.

  • Do not use it when

    • The excitation is non‑periodic or irregular (e.g. real earthquake records) → use a Path time series.

    • The loading is simply constant or linearly varying → use Constant or Linear time series.

🔗 Relation to OpenSees

Alpaca4d’s trigonometric time series corresponds to the OpenSees Trig timeSeries:

timeSeries Trig $tag $tStart $tEnd $period -shift $shift -factor $cFactor
timeSeries('Trig', tag, tStart, tEnd, period,
           '-shift',  shift,
           '-factor', cFactor)

where:

  • TStart, TEnd, Period, Shift, LoadFactor in the Grasshopper component map directly to tStart, tEnd, period, shift, cFactor in the OpenSees commands.

Last updated